
Mechanics of Solids

Introduction to the linearized theory of elasticity

- Boundary value problems: Definitions
- Saint- Venant’s Principle
- Superposition principle
- Methods of solutions

- 2D elasticity problems 
- 3D elasticity problems

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Class notes given during the course



Mechanics of Solids: Theory of Elasticity

We consider a solid, of an isotropic homogeneous 
linearly elastic material, and subjected to body forces 
over it and prescribed displacements or tractions 
on its boundary.  The following equations are available: 

FORMULATION OF THE BOUNDARY VALUE PROBLEM

1. The 3 eqs of equilibrium:

( f is body force vector)

2. The 6 equations defining the strain-displacement relation:
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3. The 6 equations defining the isotropic homogeneous 
stress-strain relation:

2 , 2       Iij kk ij ijσ λε δ με λtr μσ ε ε= + = +

There are 15 equations with 15 unkowns:

Three displacement components:

Six strain components:

Six stress components:   

The problem is well posed

We know that a linear elastic solid satisfies 
the second principle of thermodynamics
and that there exists a potential function 
which, has a quadratic form in the strains 
(or the stresses).
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There are two ways to combine the 15 equations:

The first one is to consider the displacement 
components          as the unknowns. 

Introduce                                           in 

to obtain:

Intoduce it to the equilibrium equations:

to obtain:

NAVIER’S EQUATIONS
These are the three Navier’s Equations with 
the three displacement components 
as the unknowns.

With the displacements known we go back to:

to calculate the strains

With the strains known we obtain the stresses 

from 

Note that there is no need to satisfy the 
compatibility equations:

because we calculate           from
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The second way  to combine the 15 equation is :

to  consider the stress components         as unknowns.     

Then we introduce the strain-stress relations:

In the compatibility equations

to obtain:

From the equilibrium equations (take the derivatives):

BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

Taking the trace of the last equation we get:

Using it in the last equation we obtain
the Beltrami-Michell compatibility Eqs:

In several problems the body forces can be 
assumed negligible. We have the simplification: 
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To solve the system of equations we need the appropriate 
boundary conditions: In general we have three of them.

We consider a body occupying a domain       in 3 with 
boundary         .

We divide the surface boundary into two parts so that:

, 

represents the part where displacements are 
prescribed:

on 

represents the part where stress vector is prescribed:

on 

BOUNDARY CONDITIONS
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type I, or mixed BVP: we have to  specify tractions and 
displacements on the corresponding parts of boundaries.

type II:  we have to specify displacement on the 
Corresponding boundary conditions.

type III: we have to  specify tractions on the 
corresponding part of boundaries:
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TYPE I or mixed BVP: we have to  specify tractions and displacements on the 
corresponding parts of boundaries:

Navier Equations to solve                                                          over 

Subjected to  Boundary Conditions:

Tractions:                            on

Displacements:                    on   
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Navier Equations to solve                                                          over 

Subjected to Boundary Conditions

Displacements:                    on   i iu u= uS

, ,( ) 0k ki i jj iu u fλ µ µ+ + + = Ω

TYPE II: Displacement Boundary Conditions
we only have displacement boundary conditions ,u tS S≠ ∅ =∅      
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TYPE III: we have to  specify tractions on the corresponding part of boundaries:

Navier Equations to solve                                                          over 

Subjected to Boundary Conditions

Tractions:                            on
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The traction BVP in terms of stress components :

Here the following equations constitute the problem: 

1. Equations equilibrium                             

2. Stress compatibility equations:

3. Prescribed tractions on the surface:                       

σi ij j it n t= = tSon
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SAINT- VENANT’S PRINCIPLE

When forces are considered on the surface, 
the elasticity boundary problem is replaced with 
another for the same body but with the 
substitution of boundary conditions by statically 
equivalent conditions:

SUPERPOSITION PRINCIPLE

In linear elastic theory, the 15 equations we have
as well as the boundary conditions, are linear. This 
leads to the formulation of the superposition principle.

We consider a body occupying a domain       of 3

with boundary        .

I: it is subjected to surface forces            and 
body forces            and produce the stress field           .

II: It is subjected to surface forces            and  
body forces               to produce the stress field              .  

The simultaneous application of

and

will produce the stress field

Ω
Ω∂

.

Example
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PLANE ISOTROPIC LINEAR ELASTICITY

Several important practical problems do not require 
the solution of the 3D problem for the state 
of stress and strain. 

Because of the particular geometry of the solid 
and the form of the loads, the elasticity equations can
be considered as functions of only two spatial 
variables. 

The problem is reduced to a plane problem.

Such plane problems are two:

1. Plane strain states
2. Plane stress states

STATE OF PLANE STRAIN
For long prismatic bars subjected to lateral forces:

STATE OF PLANE STRESS
For thin plates loaded 
in plane:
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STATE OF PLANE STRAIN
For long prismatic bars subjected to lateral forces:

For a prismatic structure of infinite length or when its ends
are fixed, we can assume  in addition   that      in each section. 

From Hook’s Law

the non-zero stresses are                             and
(functions of        and      ):  
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STATE OF PLANE STRAIN
For long prismatic bars subjected to lateral forces:

, 0 ij j ifσ + =

Equations of equilibrium
in plane strain: 
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BOUNDARY CONDITIONS FOR PLANE ELASTICITY
The same assumptions apply here:

The surface forces        and         must be functions 
of only x1 and x2, with                in order that
the strain be truly plane.  For conditions of type II, 
we have:

with the normal vector 

1 2( , )n n n

With the stresses chosen as unknowns, the 
compatibility equations must be satisfied.
In the plane strain case, the only 
compatibility equation that is not
automatically satisfied is:

In Summary:

We have 8 equations and the following 8 
unknowns:

should be calculated so that they satisfy and 
boundary conditions. 

,
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STATE OF PLANE STRAIN

The 8 equations can be reduced to 3 as follows. 
The three stress-strain equations:

are introduced in the compatibility equation,

to obtain:

Differentiate the equilibrium eqs
(with x1 and x2) and add the result

to obtain:

compatibility equation in terms of stresses

3 equations with 3 unknowns
,          ,  
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STRESS FUNCTION FOR PLANE STRAIN PROBLEMS

The problem can be further reduced to one equation. 

We assume that the volume forces are derived from
a potential V:

It’s easy to show that the following stresses, 

satisfy the two equilibrium eqs:

For negligible body forces we have the biharmonic eq,

and 

, ,

is the so-called Airy stress function.
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STRESS FUNCTION FOR PLANE STRAIN PROBLEMS

Using a stress function the problem is solved as follows:

1: identify the Airy stress function        and verify the 
biharmonic equation: 

2: calculate the stress components using:

, ,

3: calculate the strains from,

4: calculate the displacements from, 
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STATE OF PLANE STRESS
For thin plates (i.e., along x3) loaded in 
plane we assume that: 

Equations of equilibrium in plane stress 

From Hook’s Law

and the non-zero stress components, 

Invert 

, 0 ij j ifσ + =
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STATE OF PLANE STRESS
For thin plates (i.e., along x3) loaded in 
plane we assume that: 

BOUNDARY CONDITIONS FOR PLANE STRESS
The same assumptions apply here (as in Plane Strain).

The surface forces        and         must be functions 
of only x1 and x2, with                in order that
the strain be truly plane.  For conditions of type II, 
we have:

with the normal vector 

1 2( , )n n n
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STATE OF PLANE STRESS
Compatibility Equation (the same as in 
plane strain):

And the condition because         in not zero:

Integration of the last relation imposes:

In Summary:
As in the case of plane strain
we have 8 equations and the following 8 
unknowns:

should be calculated.

,

As in the case of plane strain, we can use the 
stresses as unknowns to reduce the equations 
from 8 to three. The substitution of strain components:

in the compatibility equation and the use of equilibrium
results in:

which with the 2 equilibrium eqs form the three eqs
with three unknown stresses.

, ,

If we neglect the body forces and consider a stress function 
(Airy stress function) such as in the plane strain case,

we obtain the biharmonic equation                        .     
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THERMAL STRESSES

We have for the strains from energetric considerations:

In plane stress we have with
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THERMAL STRESSES

Introduce the strains

( )

( )

11 11 22

22 22 11

12 12

1 ;

1 ;

1
2

    

    

ε σ vσ α T
E

ε σ vσ α T
E

ε σ
G

= − + ∆

= − + ∆

=

And combine it with the equilibrium 
equations with no body forces
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2 2

11 222 2
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0    σ σ αE T
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Compatibility in terms of stresses

in the compatibility equation

Use the definitions

, ,
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EQUATIONS OF EQUILIBRIUM

STRAIN COMPONENTS IN TERMS OF DISPLACEMENTS

BIHARMONIC EQUATION

⋅
STRESS COMPONENTS

x
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IMPORTANT
In plane strain or plane stress we arrive at
the same biharmonic equation:

Thus the stresses are the same in both 
cases.  The difference between the two 
states appears in the stress-strain relations.

Direct analytical solutions of elasticity 
problems are not easy, and often, are not 
even possible. 

Methods based on the rigorous use of 
applied mathematics are proposed to 
handle the some classes of problems.

Other techniques permit approximate 
solutions based on experience. 

List of the methods most often used in linear elasticity.

Inverse Method. Here, the displacement or stress field is assigned
to the body and we determine all the other quantities. 
Method of Potential. To simplify the elasticity equations, we introduce
potential functions that yield the solution to Navier's equations or 
those for stress.
Semi-Inverse Method. Here part of the stress and displacement
fields are specified. Then, knowing these elements and applying  
Elasticity theory, the equations which must be satisfied by the 
remaining stresses and displacements are determined. Saint-Venant
applied this method to bending and torsion of prismatic bars.
Complex Variable Methods. This method uses analytic functions 
defined in the complex plane to solve elasticity problems. 
Variational Methods. Here the elasticity equations can be obtained 
by minimizing a generalized energy function.
Others. Other methods include integral transform methods 
and numerical approaches such as the finite element method.
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POTENTIAL OR DISPLACEMENT FUNCTIONS

To solve Navier's equations, potential or displacement functions are introduced
in such a way that the displacement vector in Navier's equations is obtained
from the derivatives of these functions. 

- These potential functions are governed by Laplace's equation or the biharmonic
equation, well known in mathematical physics.

- To advance further in that sense, we need the Helmholtz' decomposition.

Theorem:
Helmholtz' Theorem
A finite and continuous vector field a, that is zero at inifity, can be represented 
as the sum of an irrotational field b and a solenoidal field c:

with and

From vector calculus
1. There exists a scalar potential       such that  
2. There exists a potential vector function        such that 

a = b + c 0 b =  ∇× 0 c =  div
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POTENTIAL OR DISPLACEMENT FUNCTIONS

With this displacement we obtain:

We know from kinematics that the infinitesimal strain tensor gives:

(assume                      ) 

With these relations, the Navier Equations, 

become:

Every pair of functions satisfying this
function produces a displacement given by:

that is a solution to Navier's equations. 
(The inverse statement also applies)
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POTENTIAL OR DISPLACEMENT FUNCTIONS

Lamé Strain Potential

Particular solutions of, 

are produced from the two equations:

; 

When                                and 

The displacement is given by:

or  for simplicity

is called Lamé strain potential.

In terms of the Lamé potential 

For particular solutions in practice
(i.e., Laplace equation and      is harmonic) with: 



POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Sphere Subject to Internal and External Pressure
(THICK-WALLED SPHERE)

Because of spherical symmetry, we use spherical coordinates                     .

Here all the shear stresses and strains are zero, and the only non-zero
displacement is          .
To solve this problem, we use the potential function approach:

We combine two potentials to obtain the following:

for the solution of the problem.

Mechanics of Solids: Theory of Elasticity



The chosen function

satisfies Laplace Equation

Expressing all parameters in spherical 
coordinates                     we obtain,

Inserting these relations into Hook’s law, we get

Mechanics of Solids: Theory of Elasticity
POTENTIAL OR DISPLACEMENT FUNCTIONS
Example: Hollow Sphere Subject to Internal and External Pressure
(THICK-WALLED SPHERE)
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The integration constants in the 
stresses 

Are obtained with the help of BCs

POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Sphere Subject to Internal and External Pressure
(THICK-WALLED SPHERE)
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When >>e ir r

When                 is very small and Pe=0−e ir r

2( )
σ = σ =

−
i i

θθ φφ
e i

Pr
r r

Example: Hollow Sphere Subject 
to Internal and External Pressure(THICK-WALLED SPHERE)



POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Cylinder with Internal and External Pressures
and fixed Ends Subject to Internal and External Pressure
(THICK-WALLED CYLINDER)

Mechanics of Solids: Theory of Elasticity

Boundary Conditions 

Because of cylindrical  symmetry, 
we use cylindrical  coordinates                .

Here all the shear stresses and strains are zero, 
and the only non-zero displacement is          .

To solve this problem, we use the potential 
function approach.  For this problem, consider



POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Cylinder with Internal and External Pressures
and fixed Ends Subject to Internal and External Pressure
(THICK-WALLED CYLINDER)

Mechanics of Solids: Theory of Elasticity



APPROXIMATION FOR THIN-WALLED CONTAINER

Example: Hollow Cylinder with Internal and External Pressures
(THICK-WALLED CYLINDER to THIN-WALLED CYLIDER)

Mechanics of Solids: Theory of Elasticity

If the wall thickness is les than 10% of the 
Inner radius, the cylinder is classified as a 
thin-walled.

The variation of stress with radius is disregarded 
and the following approximation can be 
adopted:



GALERKIN VECTOR

Mechanics of Solids: Theory of Elasticity

2div( )Φ =∇ Φ∇

( )2 2div( ) diva a= ∇∇

Define a vector V function related to the 
displacement vector u with:

Introducing this in the Navier Eqs:

and using the identities:

Any biharmonic vector function can serve 
as a Galerkin vector.

The displacement u will satisfy Navier
Eqs. 

The identity and Navier Eqs are 
equivalent.



LOVE’S STRAIN FUNCTION

Mechanics of Solids: Theory of Elasticity

Particular case of the Galerkin vector

Introduce it in

Introduce it in 

Displacement components: 

In cylindrical coordinates: 



KELVIN’S PROBLEM: 
Concentrated Force Inside an Infinite Body
(application of the strain potential)

Infinite solid subjected to a concentrated force 
(known as Kelvin’s Problem)

Mechanics of Solids: Theory of Elasticity

Using the strain-displacement and stress-strain relations,
the stresses are:

The solution to this problem is done 
by considering the Love’s strain 
potential (Independent of  angle
due to angular symmetry).



KELVIN’S PROBLEM: 
Concentrated Force Inside an Infinite Body
(application of the strain potential)

Infinite solid subjected to a concentrated force 
(Kelvin’s Problem)

Mechanics of Solids: Theory of Elasticity

The following function 

is found to satisfy

and  its derivatives entering the stress components:  



KELVIN’S PROBLEM: 
Concentrated Force Inside an Infinite Body
(application of the strain potential)

Infinite solid subjected to a concentrated force 
(Kelvin’s Problem)

Mechanics of Solids: Theory of Elasticity

Stress components: 

The constant K is calculated by considering the
force equilibrium in the vertical axis: 



CERRUTI’S PROBLEM: 
Tangential Force at the end of a 
Semi-Infinite Body

Mechanics of Solids: Theory of Elasticity

BOUSSINSEQ’S PROBLEM: 
Vertical Force at the End of a 
Semi-Infinite Body

The two important 3D problems are solved using potentials.

Problems of practical importance involve the effect of stresses acting in semi-infinite media (contact).
Theoretically such solutions are obtained with the help of these two problems. 
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POTENTIAL OR STRESS FUNCTIONS

To solve the Beltrami-Michel compatibility equations for
the stresses we introduce a symmetric tensor stress function               

(it is a tensor because the stress is a tensor) and 
expresses the stress components as follows:

With zero body forces these components satisfy equilibrium.

There are two types of functions:

If we consider only the diagonal elements         we have the
Maxwell system. If we keep the off diagonal elements
we have the Morera system. Both systems satisfy equilibrium.



Mechanics of Solids: Theory of Elasticity
POTENTIAL OR STRESS FUNCTIONS

Plane stress problems:
we consider                                            which 
we call the Airy stress function. Some of the equations
are not satisfied due to the approximate nature of
Plane Stress but if we define the stresses as derivatives of:

The following biharmonic equation holds

Plane strain problems:
Because                                               in such problems, we
introduce:

and the above biharmonic equation still holds true.

Beltrami-Michell compatibility equations

and
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FORMS OF AIRY STRESS FUNCTIONS

It is relatively easy to find a stress function that satisfies 

But it is difficult to satisfy the boundary conditions even for
functions that satisfy the biharmonic equation.

In general we start with (replaced                          with                    )  

All polynomial terms of degree less than or equal to 
three satisfy the biharmonic equation. Terms of 
higher order should not be considered, but if they 
must be included, their coefficients should be 
chosen with care to satisfy the biharmonic equation. 
This approach is effective in many problems with 
rectangular domains..
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Example: Long, Thin Beam with a Uniform Load

The boundary conditions are : At the two ends of the beam                           : 
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Example: Long, Thin Beam with a Uniform Load We consider the Stress Function

And use

, ,The boundary conditions are :

At the two ends of the beam                            : 
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Example: Long, Thin Beam with a Uniform Load
With the stresses known, we use the strain stress
relations to obtain the strains (Plane Stress)

(where f is the maximum deflection)

We integrate the strains to get the displacements

2
1 2 1 2

1

At   0        0       0∂
= ⇒ = = =

∂
ux ,x u , u f ,
x

1 2 2At    ,   0     0
2

= ± = ⇒ =
lx x u
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FORMS OF AIRY STRESS FUNCTIONS IN CYLINDRICAL COORDINATES

For problems with rotational symmetry we have
In general we start with (replaced                    with               )  

The coefficients are constants and n is an integer. 
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Example: Normal Linear Load on the 
flat Edge of a Semi-Infinite Plate

Boundary Conditions 
The stresses 

The vertical force is in equilibrium
with the vertical component of the 
radial stress at a distance r.

0   for   = /2= = θ ±θθ rθσ σ π

The solution to the problem is obtained 
by setting the following Airy function

Which satisfies the biharmonic equation

⋅

STRESS COMPONENTS
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Example: Normal Linear Load on the 
flat Edge of a Semi-Infinite Plate

Boundary Conditions 
The stresses are :

The vertical force is in equilibrium
with the vertical component of the 
radial stress at a distance r.

0   for   = /2= = θ ±θθ rθσ σ π

⇒θ
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With 
From the stresses and Hook’s law we have the strains,

They are integrated to get the displacements,

To avoid rigid body displacements, we impose the following 
conditions in the integration constant (b is an arbitrary constant):
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