Mechanics of Solids

Introduction to the linearized theory of elasticity

- Boundary value problems: Definitions
- Saint- Venant’s Principle
- Superposition principle
- Methods of solutions
- 2D elasticity problems
- 3D elasticity problems

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Class notes given during the course
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FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a solid, of an isotropic homogeneous
linearly elastic material, and subjected to body forces
over it and prescribed displacements or tractions

on its boundary. The following equations are available:

1. The 3 eqs of equilibrium:
o, +/,=0 , divo+f=0

( fis body force vector)

2. The 6 equations defining the strain-displacement relation:

8..:%<ui’j+uj,i) : SZ%(VH‘F(VIJ)T)

y

3. The 6 equations defining the isotropic homogeneous

stress-strain relation:

0, = Aeyu 0, +2ue; , o =Arel+2ue

There are 15 equations with 15 unkowns:
Three displacement components: 1;
Six strain components: Eij

Six stress components: Tij

mm=) The problem is well posed

We know that a linear elastic solid satisfies
the second principle of thermodynamics
and that there exists a potential function
which, has a quadratic form in the strains
(or the stresses).

oW (e;)
OE..

1
Wie,)= Eieﬁekk + e,  with 0, =
ij
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NAVIER’S EQUATIONS

There are two ways to combine the 15 equations:

The first one is to consider the displacement
components U; asthe unknowns.

1
» Introduce & :E(ui’j +uj’,-) in

= Agy0; + 21,

J
to obtain:
Oij = Mgk 055 + plwi j + wj ;)
Intoduce it to the equilibrium equations:

lJJflO

to obtain:

(A 4 ) g i + poug, jj T Ji=0

—>These are the three Navier’s Equations with

the three displacement components 1,
as the unknowns.

With the displacements known we go back to:
1
€ = E(ui,j + “j,i)
to calculate the strains £
With the strains known we obtain the stresses Tij
from o, =Au, 0, +puu,  +u,,)

Note that there is no need to satisfy the
compatibility equations:

Cijkl + Eklij — Ejl,ik — Eik,j1 = 0

L
o
L=

because we calculate =ij from U;
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BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

The second way to combine the 15 equation is :

to consider the stress components 0 as unknowns.

Then we introduce the strain-stress relations:

v 1+v
€ __Egkké‘ij—i_ Oy
In the compatibility equations
Sijkl + Eklij — Ejlik — Sik,jl = 0
to obtain: 1 5.
( +V)O—ij kk mm nn " ij +O-pp,ij
—(1+V)(0w, g 7)) =0

From the equilibrium equations (take the derivatives):

O-iq,ql ]r ri = _-f; ] f; I

A 4

(1 + V)O-z'j,kk O um nnél] T O-Ppa?]'

+(1+v)(f,;+f,.)=0
Taking the trace of the last equation we get:

(=)0, 0 ==(1FV) S

Using it in the last equation we obtain (v * 1)
the Beltrami-Michell compatibility Egs:

1
O-ij,kk—l_l_i_v mm,ij fl]+](]l+ fnnélj_o

In several problems the body forces can be
assumed negligible. We have the simplification:

1

B (0t

I+v
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0Q)

type |, or mixed BVP: we have to specify tractions and

displacements on the corresponding parts of boundaries.

type ll: we have to specify displacement on the
Corresponding boundary conditions.

type lll: we have to specify tractions on the
corresponding part of boundaries:

BOUNDARY CONDITIONS

To solve the system of equations we need the appropriate
boundary conditions: In general we have three of them.

We consider a body occupying a domain €2 in R3 with
boundary 0Q).

We divide the surface boundary into two parts so that:
Q=S50S , S NS =

S, represents the part where displacements are
prescribed:

U, =U; on S

l u
St represents the part where stress vector is prescribed:

ti:O-l-]-nj:ti on S

t
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Type | or mixed BVP: we have to specify tractions and displacements on the
corresponding parts of boundaries:

Navier Equations to solve (A + t)u, . + pu, .+ f, =0 over Q

L Jjj

Subjected to Boundary Conditions:

Tractions: £, =o,n, =% on S,

— O _ﬁukké‘ +,u(u”+u]l) |:>/1ukkn -|—lu(ulj—|—u )n _z‘ on S

Displacements: u. =u, on S

u
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TyPE ll: Displacement Boundary Conditions

we only have displacement boundary conditions |S, #& , §,=O

t

Navier Equations to solve (A + p)u, , +pu; .+ f, =0 over Q

Subjected to Boundary Conditions

Displacements: U, =U. on S,
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TyPE lll: we have to specify tractions on the corresponding part of boundaries:

Navier Equations

tosolve (A+u, ,,+pu, .+ f, =0 over Q

L Jjj

Subjected to Boundary Conditions

Tractions: ¢, =o,n,

=1 on §,

— O _ﬁukké‘ +,u(u”+u]l) |:>/1ukkn -|—lu(ulj—|—u )n _z‘ on S
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The traction BVP in terms of stress components: |S =0 , S #J
Here the following equations constitute the problem:
1. Equations equilibrium
o, +f,=0 over Q
2. Stress compatibility equations:
O ik +$O_mm,ij + 1t +iﬁ1,n5ij =0 over €

3. Prescribed tractions on the surface:

t,=0c,n, =1t on §,
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SAINT- VENANT’S PRINCIPLE

When forces are considered on the surface,

the elasticity boundary problem is replaced with
another for the same body but with the
substitution of boundary conditions by statically
equivalent conditions:

Example

SUPERPOSITION PRINCIPLE

In linear elastic theory, the 15 equations we have
as well as the boundary conditions, are linear. This
leads to the formulation of the superposition principle.

We consider a body occupying a domain () of R3
with boundary O€2.

I: it is subjected to surface forces ;1) and (1)
body forces f.g_.(l) and produce the stress field T

Il: It is subjected to surface forces t:(?) and
body forces f.?;@) to produce the stress field Cf«;ﬂ.jm) :

The simultaneous application of
F) + F@) and &D +F3)

will produce the stress field —>(U-a;j (1) + U—aij{iz))
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PLANE ISOTROPIC LINEAR ELASTICITY

Several important practical problems do not require
the solution of the 3D problem for the state
of stress and strain.

Because of the particular geometry of the solid

and the form of the loads, the elasticity equations can
be considered as functions of only two spatial

variables.

The problem is reduced to a plane problem.

Such plane problems are two:

1. Plane strain states
2. Plane stress states

STATE OF PLANE STRAIN

For long prismatic bars subjected to lateral forces:
Qzy, )

Uyl = '1.!-1(;,[,’1_.;1-'2)
Ug = U9 (;tfl._ ;[.'2)
usz — '11-3(;,{,‘3)

STATE OF PLANE STRESS
For thin plates loaded
in plane:

T,

o11 = o11(w1, w2)
o2 = O22(r1,w2)
012 = 0'12(171:%1-'2)

033 = 013 = 023 = ()

v

O x,
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STATE OF PLANE STRAIN
For long prismatic bars subjected to lateral forces:

Q. ) From Hook’s Law
Hi‘-_ Uy — '1.!-1(;,{.’1? ;i-'g) vE _
[/ L U= ua (1, r2) o = 1+ ) (1 —20) trel + 15, °€

usz — '11-3(;,{,‘3)
the non-zero stresses are 011.022,033and 019
(functions of .1 and x9):

4

V4 7

P4 4 e

p P 2
# Vd
o 2
= - 7
J:_) / ~ Fd
// p
S~ 7
ST T T T A T T
T 1

T E
‘ o= 5 (&.‘11(1 —v) + UEQQ)
For a prismatic structure of infinite length or when its ends (1+w)(1 = 2v)
are fixed, we can assume in addition us = 0 in each section. o — E (ﬁ (1—v) + ve )
_ 22 = ‘ Eo22( 1 — £11
_ . D3 (1+v)(1—2v)
Ouy duy  F33= 5 =0
f11= o F22 7 o o _
‘ d"['l U2 R B 1 (")'U.l &)H-g —0 o L E ~
B o 1 (‘:)-u.l i (C)L-:Q S 2 E);tfg (C);L'l N 12 (1 + .U) 12
279\ 0wy | Oay ) 1 (OUQ . aug) 0 E (611 + £9)
E = — - - = (Taa — M\ £ .
72\ g | Oy 33 (14 v)(1—2v) 1 22
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STATE OF PLANE STRAIN

For long prismatic bars subjected to lateral forces:
Qzy, )

7
4

g 7

P4 e

p P g
P Vd
F = - 7
D) / < 7
// p
~ 7
ST T T T A T T
T 1

Uy — ui (;,L’l._, ;L'Q)
g = ug(ry, ra)

us — '11-3(;1,’3)

Ty E

o= (1+rv)(1—2v)
E

722 = (1+rv)(1—2v)

E =
1 _|_ fj) =12
E

012:(

(511(1 — .U) + .U-EQQ)

(522(1 — .U) + .U-Ell)

A 4

11

my

£922

12 —

14 v
5
14 v
5
14 v

019 .
E 12

((1 — .UJO'H — UO’QQ)

((1 — .U)(TQQ — -Uo'll)

Equations of equilibrium
in plane strain:

73T 1 )1 — 20

] v(e11 + €22) -

doq Joz
- | =—+ +f1=0
dirq o h
8{721 ({)0'22
_ —— + fo =0
(“);L'l (");tfg fQ
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BOUNDARY CONDITIONS FOR PLANE ELASTICITY

The same assumptions apply here: .
With the stresses chosen as unknowns, the

compatibility equations must be satisfied.
In the plane strain case, the only
compatibility equation that is not
automatically satisfied is:

The surface forces El and Eg must be functions
of only x; and x,, with 73 = 0. in order that
the strain be truly plane. For conditions of type I,

we have:
, — )2 )2 - )2 -
" 1 = 01111 + 01919 0w + 0722 — Qg
8;1.-2 - 6)-4: 1 - (");L' 1 8;1.-2
EQ — 01211 — 092919
In Summary:
with the normal vector y
n(n,,n,) We have 8 equations and the following 8
unknowns:
€11, €22, €12, 011, 022, 012, U71,U9
should be calculated so that they satisfy and
boundary conditions.

O T
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STATE OF PLANE STRAIN

The 8 equations can be reduced to 3 as follows.
The three stress-strain equations:

Differentiate the equilibrium eqgs
(with x; and x,) and add the result

(.:)(Tll C)C"lg

=0
d C) L9 fl
C)G"Ql ()0'22
- - + fo =0
drq 0o f2
to obtain:

A 4

)? 0? )2 oy )
9 o 012 011 n 'L{ 02:2 n ‘ifl df2
()Ildig ()1.‘12 ();{,‘22 ().,[1 C)ig

C‘)E 82

B 1 oft  Ofa
/(()[2 - {){2) (Jll +022) - 1—.1’,/ (8&'1 ™ U;L’g)

14+ v
£11 = E ((1 — .U)Gr'll — I/O’gg)
14+
£99 = 1 —v)oge —rvo
22 B (( )o22 11)
14+ v
12 = E J12 -
are introduced in the compatibility equation,
62611 82*-22 _9 82?312
81:2 C)i 1 E);zrlé);zrg
to obtain:
82
Ao ((1 — U)(Tll — .F/'Cl'gg) -+
s
."2 i 2
,-()—2 (1 = v)oae —vo11) = 2£
ory Dx10ry

compatibility equation in terms of stresses

: 3 equations with 3 unknowns
J11.,022,0712
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STRESS FUNCTION FOR PLANE STRAIN PROBLEMS
02 N2 [ <
The problem can be further reduced to one equation. . 0 4 J (011 + 099) = — L Of 4+ Of2
)2 9.,.2 - : 2
dxy Ol 1 —v \Odry  Juas
We assume that the volume forces are derived from
a potential V- A TR N et 2 e R A
fim— UV_ i 19 Dt dridrs O 1 —v \Orq2  Ous2)
or; ' l
It’s easy to show that the following stresses, 1—20
_ AND + AV =10
0% 2P 1 —v
7=V 9.2 227 V+ 9y 2
2 s For negligible body forces we have the biharmonic eq,
a2
019 = —————— J _(I) AAD =
CARRAD: and
satisfy the two equilibrium egs: 52d 2P 0?2 D
s : +' . O11=— ——=,02= 57— »012 =~ 5
(");,L‘l E’);LTQ (");.1-'1 C);LTQ
(. is the so-called Airy stress function.
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STRESS FUNCTION FOR PLANE STRAIN PROBLEMS 3: calculate the strains from,
1+
Using a stress function the problem is solved as follows: £11 = 5 ((1 — L*’)Ull — L”Jm)
. identify the A ion D and verify th i 1 +v
1: identify the Airy stress function ©.and verify the E99 = 7 ((1 — V)099 — ycrll)
biharmonic equation: :
- 1 +wv
ANAD = () 12 = T 012 -
2: calculate the stress components using: 4: calculate the displacements from,
(")2 40 B NP Ou E)-u.g
011 = — , 022 — — ’ _ 1 = —
AT O 2 £11 = = <22 9y
D? P
012 = —

(':);,[,‘1(':);{.'2 £19 = % ({‘)i n C)HQ)
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STATE OF PLANE STRESS
For thin plates (i.e., along x;) loaded in
plane we assume that:

011 = o111, 12)
022 = 092(x1,x2)
J12 — 012(171:;1-'2)

033 — 013
= 0923 = 0

O €,

Equations of equilibrium in plane stress

doq Joz
_ . + — + f1 =0
O ; + fz - 9 Oy Jiro h

o o
‘.21+‘:22—|—f2:0
drq Oxo

From Hook’s Law

g = —% trol + (IEU) o
and the non-zero stress components,
1 1+
1T (011 —vog3) €12 = g 71
1 %
€22 = 1ol (022 —vo11) £33 = ) (011 + 722)
€13 = €93 = 0
E
=TT 5 (£11 + vea2)
Invert ‘ E
| 022 = 1.2 (c22 +ve11)
E -
012 = 1+Ij £12 .
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STATE OF PLANE STRESS
For thin plates (i.e., along x;) loaded in
plane we assume that:

xT 9

O X,

Jg11 = Ull(i'la'*UQ) T2 — 022(;1:1,;1.'2)

=) o012 = o12(x1, 22)

033 = 013 = g93 = ()

BOUNDARY CONDITIONS FOR PLANE STRESS
The same assumptions apply here (as in Plane Strain).

The surface forces 71 and f2 must be functions
of only x; and x,, with 73 = 0. in order that

the strain be truly plane. For conditions of type I,
we have:

T2 tl = 011N + O12N9
fg — 012N —+ T9291l9 .

with the normal vector

n(nlanz)
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STATE OF PLANE STRESS
Compatibility Equation (the same as in
plane strain):

02 - 02 - 02 -
o £11 N o 22 9 0 £12
6)-4.-22 8;1?12 ("");1.-18;.3.-2 .
And the condition because £33 in not zero:
oy [aph i 2
Je3g  0Oezz 0733 0
Oaq Jxo dar10x9

Integration of the last relation imposes:
£33 = f)lg + 441,,[,'1 -+ 442;1-'2

In Summary:

As in the case of plane strain

we have 8 equations and the following 8
unknowns:

£11. £22. €12, 011, 022, 012 , U1.UQ

should be calculated.

A 4

As in the case of plane strain, we can use the
stresses as unknowns to reduce the equations

from 8 to three. The substitution of strain components:

A 1 (o D 0as) 1 ( ) 1+v

£ = — — Cag = — (Tang — 19 — o
11 E 11 22 22 E OG22 — Vo1 12 E 12

in the compatibility equation and the use of equilibrium

results in:
02 9?2 dfy  Ofs
— ¢ = —(1 . 4 —
(0;1'% + di%) ('(Tll —|_ 622) ( + IU) ((')J'l {‘)trg)

which with the 2 equilibrium eqgs form the three egs
with three unknown stresses.

A 4

If we neglect the body forces and consider a stress function
(Airy stress function) such as in the plane strain case,

)*P 0D B DD
8.1.’1 a;ifg

) g22 — e I ’ 012 -
D2

o11 = ——
Oiro?

we obtain the biharmonic equation AAD = 0.
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THERMAL STRESSES

We have for the strains from energetric considerations:

g =
211

((T -+ (qua(T — Tg) —

A

SN+ 2

o))

Oij = )\E};k (533 -+ Q;L-E«gj — (3)\ + 2,[£—)(1{'(T — T[j) (5-3;;,' .

In plane stress we have with (AT =
|
& = —(011 —V0,, ) +aAT;
E
1 .
Eyy = —(022 —Vv0,, ) +0AT;
E
|
&1 = O1»

T-T)

E
n T 1—v°

_E
°22 1—v°
o, =2Geg,
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THERMAL STRESSES Compatibility in terms of stresses
Introduce the strains o>
. ~+— (011+022+aEAT)=0
_ 1. AT ox;  Ox,
&1 Z 0, —V0,, )+ O0Al;
. 1 ( ; )+aAT Use the definitions
» = S\ 0y —V0Oy, |
E; 2P 0?P ?> P
O11 = ——=,02= 75 ,»012 =~ 5
812 = %012 1 E’);{?QZ {');Elz C)Jfldifg
in the compatibility equation l
32511 N ({)2&?22 _9 82-512 4 5
Do D12 Duwr10ro V'O +akEV (AT) =0

And combine it with the equilibrium
equations with no body forces

0011 (?)0'12 @G’Ql 36’22
— 4+ — + f1=0 — + — + fo =0
daq o ! O diro f2
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A

r3

STRAIN COMPONENTS IN TERMS OF DISPLACEMENTS

1 Dty u, 1 Oug i du,
T gy 00 =T 0 2T Y.

1 [fOu, Ou, 1 /1 Ou, Oug g
S T 2 ( 0= N or ) o= 2 (!’ ol i or 1
) 1 /1 Ou, Oug
”“*”‘9_§<F 20 a)

)

T
EQUATIONS OF EQUILIBRIUM
()”'rr N 1 M N ()U'r'z Tprpr — 008 4 ,v’Jb-r —0
._,;)-r r ‘_dH .__c),-:; | r
e e e =

BIHARMONIC EQUATION
1 0 0> 1 0?2

V4(I) — | — ‘ — —

(T‘ OT + 8,7:2 + _.}nZ 092

1 0P 0% P

(? Or + Or?2

1 924
N ())Z0

r2 (‘)6)2

STRESS COMPONENTS

1 0P . 1 0%
Orr = — [ 5 Ano
r Or  r2 002
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IMPORTANT
In plane strain or plane stress we arrive at
the same biharmonic equation:

AND =0

Thus the stresses are the same in both
cases. The difference between the two

states appears in the stress-strain relations.

Direct analytical solutions of elasticity
problems are not easy, and often, are not
even possible.

Methods based on the rigorous use of
applied mathematics are proposed to
handle the some classes of problems.

Other technigues permit approximate
solutions based on experience.

List of the methods most often used in linear elasticity.

Inverse Method. Here, the displacement or stress field is assigned
to the body and we determine all the other quantities.

Method of Potential. To simplify the elasticity equations, we introduce
potential functions that yield the solution to Navier's equations or
those for stress.

Semi-Inverse Method. Here part of the stress and displacement
fields are specified. Then, knowing these elements and applying
Elasticity theory, the equations which must be satisfied by the
remaining stresses and displacements are determined. Saint-Venant
applied this method to bending and torsion of prismatic bars.
Complex Variable Methods. This method uses analytic functions
defined in the complex plane to solve elasticity problems.
Variational Methods. Here the elasticity equations can be obtained
by minimizing a generalized energy function.

Others. Other methods include integral transform methods

and numerical approaches such as the finite element method.
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POTENTIAL OR DISPLACEMENT FUNCTIONS

To solve Navier's equations, potential or displacement functions are introduced
in such a way that the displacement vector in Navier's equations is obtained
from the derivatives of these functions.
- These potential functions are governed by Laplace's equation or the biharmonic
equation, well known in mathematical physics.
- To advance further in that sense, we need the Helmholtz' decomposition.

Theorem:

Helmholtz' Theorem

A finite and continuous vector field a, that is zero at inifity, can be represented
as the sum of an irrotational field b and a solenoidal field c:

a=b+c with Vx b=0 and dive=0

From vector calculus
1. There exists a scalar potential ¥ suchthat b = Vo
2. There exists a potential vector function ¥ suchthat ¢ = V x W

>u=Vo+VxW¥
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POTENTIAL OR DISPLACEMENT FUNCTIONS S

u=Vp+VxW

With this displacement we obtain:

divu = divVe +div(V x ¥) =divVe+ 0=V —

Vxu=VxVp+Vx(VxWw)
—0+V x(VxW)

= V(div¥) — V¥ = —V2¥

(assume divW¥w = 0)

_

We know from kinematics that the infinitesimal strain tensor gives:

2 . A
Vop = &4

divu = &4

1
§V X U = W3z2€] T W13€ +— W21€3

With these relations, the Navier Equations,

A+ )V (diva) + pAu+ F=0

become:

(A +21)V(V20) + uV x (VW) = 0

Every pair of functions satisfying this
function produces a displacement given by:

u=Vp+VxW

that is a solution to Navier's equations.
(The inverse statement also applies)
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POTENTIAL OR DISPLACEMENT FUNCTIONS

Lamé Strain Potential

Particular solutions of,

(A+21)V (V) + puV x (V) =0

are produced from the two equations:

2 _
VZp =cnst . VW = cnst

’

When VZp =cnst and ¥ — ()

The displacement is given by: u = Vo
1

or forsimplicity u = —Vo
211

@ is called Lameé strain potential.

In terms of the Lamé potential

1
U; — D
T 2# 2
1 (i s + ;) 1
Sig = 5 \Ui,j T Uji) = 5 Pij
7 9 J VE 2,[1 1]
1
Fkk — Ukk — 2 ¥.kk
i

Tij = Aﬂiijgkk -+ Q,u.é,“;;j = %c}:—?kkcﬂ;j + ©.ij

. . . 2
For particular solutions in practice V- =0
(i.e., Laplace equation and & is harmonic) with:
o(r.0) = Crcosnb, 1% =2+ a3

,

o(r) = Cln a r? = a7 4 13,
o(f) = CH. H=tan ! 2
rq
¢ 2 2 2 2
;(R):ﬁ R :J]_‘l_[z_'_;i-'g
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POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Sphere Subject to Internal and External Pressure
(THICK-WALLED SPHERE)

;2172‘
Because of spherical symmetry, we use spherical coordinates (R? 6. g) :

Here all the shear stresses and strains are zero, and the only non-zero

displacementis Up .
To solve this problem, we use the potential function approach:

We combine two potentials to obtain the following:

P(R) = % + DR?

for the solution of the problem.
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POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Sphere Subject to Internal and External Pressure

(THICK-WALLED SPHERE)

The chosen function

' ;
o(R) = = + DR
p(R) I =+

satisfies Laplace Equation

V2y = cnst

Expressing all parameters in spherical
coordinates (7, f/, o) we obtain,

SRR =

Egp =

1 /2C
QD . Eimin — E _
20 (RS " ) | T o0 21

EQR:E@R :U .

Inserting these relations into Hook’s law, we get

C 1 +v
Tpp — 000 — 3 —|—2—1 — leuD
2C 1 +v
_ = — +2——D.
TRR R3 1 —2v
O‘gip — O9R :{Tg,;R:U ‘
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POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Sphere Subject to Internal and External Pressure
(THICK-WALLED SPHERE)

The integration constants in the

stresses
C 1+ v
Tpp = 0600 = s + 2—1 — QL-’D
207 1 +v
‘ = — +2——— D
ORR R3 T 1 —2v

Are obtained with the help of BCs

ocrrp = —F; at R =1

orr = —P. at R=r, HEEE)

Ty
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)

Example: Hollow Sphere Subject

to Internal and External Pressure(THICK-WALLED SPHERE)

UR =

When r, >> I

3 3
_p._t __3'
p?,RB pe( R)
R [ P; -.'- 1 —2v 1',*'2-3
_P 4+ — L
2u \ 2 R3 1+v 2 R3

B 1 1313 (Po— Py)  r3P; — 2P
CRR = 13— 3 13— 3
= E [ 1
ro ry
PL(RS_]') (1_R3) ORR
3 r3
G (9
L rfr{(P.—P)  r}Pi— ik 66
Opp = 0o = — ,
pp 00 2R3 73— 3 — 3
r r3 p
(P +2) P(f5+2)
) (-8
- L=
21 2R3 3 —d l+v 32—
3 3
1 7, 1—2v 1r; 1—2v
_ E IERS + 1+v 2 R3 T 1+v
2 L 1 ,rg B e B ﬁ
/ 1 i

When ¥, — 7

1

Ogp =O

is very small and P,=0

__&n
2(r, = 1)




Mechanics of Solids: Theory of Elasticity

POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Cylinder with Internal and External Pressures
and fixed Ends Subject to Internal and External Pressure

I

(THICK-WALLED CYLINDER)

L

rITTTTT

Boundary Conditions
O = =P, o0,9=0 at

Opr = _PE: Trg = 0 at

r=r;

r=r..

Because of cylindrical symmetry,
we use cylindrical coordinates(7, 6. z).

Here all the shear stresses and strains are zero,
and the only non-zero displacement is ;- .

To solve this problem, we use the potential
function approach. For this problem, consider

7

o(r)=Ciln r—, + Cor?
K

“ij T 5 (uij+uji)= E*ﬁ@j
1

Ekk — Uk k — 7 P.kk
QIH‘T’.

Oij = A0ij€kk + 2085 = E‘r‘?.kkﬁij + Pij



Mechanics of Solids: Theory of Elasticity

POTENTIAL OR DISPLACEMENT FUNCTIONS

Example: Hollow Cylinder with Internal and External Pressures
and fixed Ends Subject to Internal and External Pressure

T2

(THICK-WALLED CYLINDER)

L

AITTITTH

000 = —




Mechanics of Solids: Theory of Elasticity

APPROXIMATION FOR THIN-WALLED CONTAINER
If the wall thickness is les than 10% of the

Example: Hollow Cylinder with Internal and External Pressures Inner radius, the cylinder is classified as a
(THICK-WALLED CYLINDER to THIN-WALLED CYLIDER) thin-walled.

T2

The variation of stress with radius is disregarded
and the following approximation can be

adopted:
e="T.—T; e<&r;

!

TE- — T‘? - (Te - Ti)(re T T}'j ~z 21‘3?‘1-

riP, —r?P, =~ r}(P, — P.)

-Ij i i
'T’"_ﬁ?‘f T‘ZHT’?.

L
AITTTTT

™

Toe

&
-
ge
Q
-
3
I
<
3+ J i
|
S
Ll e
/,d-—_-\-\‘ #,d-:-h.“x
Ll
.
-
M ba
e
|
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Mechanics of Solids: Theory of Elasticity

GALERKIN VECTOR

Define a vector V' function related to the
displacement vector u with:

2uu = 2(1 — v)V?V — V(div V)
Introducing this in the Navier Egs:
(A4 p)V(divu) + pAu+ f =0
and using the identities:
div(VO) =V*®d
div(V’a) =V~ (diva)
V2 (V)
2(1 —v)

V (V?)
(A +2p) /(A + p)

—

V2 (V2V) =0

|

Any biharmonic vector function can serve
as a Galerkin vector.

The displacement u will satisfy Navier
Egs.

The identity and Navier Egs are
equivalent.




Mechanics of Solids: Theory of Elasticity

LOVE’S STRAIN FUNCTION
Particular case of the Galerkin vector

. V = V3€3
Introduce it in

V2 (V2V) =0
— V*(V*V3) =0
Introduce it in
2pu = 2(1 — v)V?*V — V(div V)

‘ AV
2/ = 2(1-—-Dﬂ(‘7zvﬁ)€3'—"7(Ei;§)

Displacement components:

5 0 V3 5 0° Vs
LU = — . LU
Ht Or101s Ht2 =  Ox 20X
0?V-
9 3
2“’&3 = 2(1 — r/)V Vg 0.}%
In cylindrical coordinates:
) 0*V., o 1 0V,
. .’u_r, = —= - . Uy = —— - -
K ordz Hlo r 000z
0V

Qg = 2(1 — )V V3 —
Ox3




Mechanics of Solids: Theory of Elasticity

KELVIN’S PROBLEM:
Concentrated Force Inside an Infinite Body

(application of the strain potential) Using the strain-displacement and stress-strain relations,
the stresses are:
Infinite solid subjected to a concentrated force l
(known as Kelvin’s Problem) - —
0 w2y 0*V,
=z \UY T o
d 5 10V, 1 0%V,
Te = — V, - ———— — ——
700 = 5. (VV o or 2 082
P N2 7
The solution to this problem is done 0. = d ((2 )V, — O‘: Izz)
by considering the Love’s strain =~ ] 0z } %
potential (Independent of angle £ o ok Ve
due to angular symmetry). o Orofd= \ r
10 o, OV
Ve =Va(r,2) 70: = 50 (“ TV d—)
%) S D%V
7z = By ((1 ~v)VV: - 6)..:22) |




Mechanics of Solids: Theory of Elasticity

KELVIN’S PROBLEM:

] L. The following function
Concentrated Force Inside an Infinite Body

(application of the strain potential) V., = Kr('f'g + ,-:;2)1f2
Infinite solid subjected to a concentrated force is found to satisfy
(Kelvin’s Problem) \VE: (VEVB) —0

and its derivatives entering the stress components:

Krz

Hitr = Gz e =0

2(1 —2v) 1 22

.2,11_-31.2 — K [(_,.2 . 32)1& Ll (_!.2 N ;_;2)1/2 T (__,.2 1 ;_;2)3/@




Mechanics of Solids: Theory of Elasticity

KELVIN’S PROBLEM:

Concentrated Force Inside an Infinite Body
(application of the strain potential)

Stress components:

(1—2v)z 312z
(12 + 22)3/2 - (12 + 22)5/2

Oppr = X

Infinite solid subjected to a concentrated force o (1 —2v)K =
(Kelvin’s Problem) 00— (12 + 22)3/2
- [ (1 —2v)z 323
0z = —H (12 1 22)3/2 T (12 + 22)5/2 |
. _ K (1 —2v)r 3rz? ]
bttt tetetettts Orz = —8 _(.I.Q_l_d_:Q)S/Q i (-;'2+:_;2)5/2_

) .
0 G'TQZO'QZ:O.

I I 1T ¢‘ I h\ The constant K is calculated by considering the

force equilibrium in the vertical axis:

P > -
I{ — < P — Qﬁ '-"drgzz ‘z:—h T 2?1_ 'f'd'-"gzz |Z:—|—?1
87(1 —r) 0 J0




Mechanics of Solids: Theory of Elasticity

CERRUTI’S PROBLEM: BOUSSINSEQ’S PROBLEM:
Tangential Force at the end of a Vertical Force at the End of a
Semi-Infinite Body Semi-Infinite Body

The two important 3D problems are solved using potentials.

Problems of practical importance involve the effect of stresses acting in semi-infinite media (contact).
Theoretically such solutions are obtained with the help of these two problems.



Mechanics of Solids: Theory of Elasticity

POTENTIAL OR STRESS FUNCTIONS

To solve the Beltrami-Michel compatibility equations for
the stresses we introduce a symmetric tensor stress function
b (;13) (it is a tensor because the stress is a tensor) and

expresses the stress components as follows:
With zero body forces these components satisfy equilibrium.
There are two types of functions:

If we consider only the diagonal elements ¢, we have the

Maxwell system. If we keep the off diagonal elements
we have the Morera system. Both systems satisfy equilibrium.

011

0929 =

033 —

012 —

023 —

0?Pyy 07Dy 0* Doy
8:}5’% 8:}5’% B Oxo0xs
0* P33 0Py, 0* P34
Ox? Ox3 B D01
Pdyy Pdyy | DDy
8:{?% 8:{?% B Ox1019
DDy DPh3y b
8;’[’38;’?1 8;’[’38;’?2 B 8;’1718;'1.‘2
0 Pz 0* Py %Py,
8;’[’18;{72 8;’[’18;’173 B 8;’1728;'1.'3
0? Py 0 Pog 0 Poy
N 8;’1728;'1'3 8;’1726;'{'1 B 8;’1738;'1.‘1

0* D1y
8:[’%
0* oy
8:1?%
0* P34
8:1?%




Mechanics of Solids: Theory of Elasticity

POTENTIAL OR STRESS FUNCTIONS

Plane stress problems:
we consider P33 = P33(x1, x2) which

we call the Airy stress function. Some of the equations ——»

are not satisfied due to the approximate nature of

Plane Stress but if we define the stresses as derivatives of:

0P sy ICALET  0Pdag

011 — —; . 0922 = —; sy 012 — ——/———F——
3 Drd dx10x9
033 = 0923 — 031 = 0

The following biharmonic equation holds
Ot Pas O* D33 O D

AAP33 = —— N .
0;}:‘111 d:rff C):r% C):I."‘Ql

=0

Plane strain problems:
Because 033 = /(011 + 022) in such problems, we
introduce:

(I)l]_ — (:[)'22 — IJ(I)SS and (I)J_z — (1)23 — (I):_))l — 0

and the above biharmonic equation still holds true.

Beltrami-Michell compatibility equations

1 82 Okk

Vo, .,
7T 1 +v OxF

1 0?0

VQO'QQ —+ :
1+ v d:?ﬁ?é

1 82 Okk

VQO'gg —+ :
1 + v d:r§

1 0?0
2 kk
V d19 +

1+ v 8:1?1 8:}32
1 90k

V20,
723t 1 4+ v Oxs0xs

1 90

V3o
O31 + 1 + v dxs0x,

0




Mechanics of Solids: Theory of Elasticity

FORMS OF AIRY STRESS FUNCTIONS

All polynomial terms of degree less than or equal to
It is relatively easy to find a stress function that satisfies three satisfy the biharmonic equation. Terms of
0 vl 1 higher order should not be considered, but if they
O Dys 0" P33 07 D33 : , -
AAPsy3 = —— 2 — =0 must be included, their coefficients should be
Oy Ory0r; 0y chosen with care to satisfy the biharmonic equation.
But it is difficult to satisfy the boundary conditions even for This approach is effective in many problems with
functions that satisfy the biharmonic equation. rectangular domains..

A

In general we start with (replaced <I>33(:r1 : ;}32) with (I’(if'l ; JFQ))
\ 4

, , 2 o 2 3 2 a2 3
O(x1,29) = ayx] + asx 129 + asxs + byx] + boxirs + bsz1 05 + by

AL 3, 202 3 A
+C1xy + Cox o + C3x]X5 + Cax 15 + C5T5 + - -




Mechanics of Solids: Theory of Elasticity - Airy stress functions

Example: Long, Thin Beam with a Uniform Load
YN
O(xy,x9) = Axy (;z?l — T)) -

2, 13 2
B;Kl;lfg —+ C;ITQ + D;El

ql/2 I

|

g = cnst

R RN RN R AR AR AR R RN RN AR

Ly

.lqE/Z

h

/2

The boundary conditions are :

h
J_?Q = — §
h

029 = —( 012 =0

O‘QQIU

6"1220.

At the two ends of the beam 17 = =/ /2:

011 d-JI,‘Q =0

h/2
4"?\"?1 — /
—h/2
h/2
ﬂjé ::U/n
—h/2

h/2 qz
/ 0921 diig — —;
—h/2 Z

o119 dreg =0

N>




Mechanics of Solids: Theory of Elasticity - Airy stress functions

Example: Long, Thin Beam with a Uniform Load

We consider the Stress Function

g = cnst
2
R R RN AR AR AN AR AR NN Y d By, ) = Ard (JT%_J_Q)
qﬁ/?- I"_"_"_“—"—"—' :i_-lqg/g h U.
1 + Buatwg + Cahy + Dt
5 po And use
" 9 i 52D 52 92

The boundary conditions are : 011 = Dro? y 022 = Dre2 y 012 = _("'_)Jrlc"")‘z.'g

! 0 &
Lo = —43 022 = —( 012 = + -

2 T11 = Gfl,ifgu{.‘% — i]:f]_;f_fg -+ 6(__."1_-2

/ .
Lo = % g99 = () o129 = 0. 099 — 244,53 —+ QB,L'Q +2D
2 T |

At the two ends of the beam 11 = :I:Z/Q: 012 = —6Auye, — 2B, '3

h/2 —’A——i B—i D——fi

_hf2 j\'rg = / 0921 du{fg — —?

n/2 —h/2 - g (12 K

JI — [ A d-;f :[]' (T: -
3 /W"”“? "2 2413(2 5)




Mechanics of Solids: Theory of Elasticity - Airy stress functions

Example: Long, Thin Beam with a Uniform Load

q = cnst With the stresses known, we use the strain stress
R R R R R R R AR AN R RR AR AY d relations to obtain the strains (Plane Stress)
/9 ou
q"/zl“““““““““‘ il"lqg/g h At x,x,=0 = u,=0, u,=f, _82 =0
X
1/2 T, 1/2 (where f is the maximum deflection)
: [
_ 7 2 -L'f ¢ (2, h? At x =x—, x, =0 = u,=0
' 011 = oI i) (—l 5 ) + oI W) (3.1.2 50 1 7 2 2
g (a3  hwy A3 . . .
Ogy = — (22 _ L We integrate the strains to get the displacements
203 \ 3 412
o a E 2 o q Pry a3 . 2u5  hZ%ro N
MY ( 1 “'2) | T 9FT (( T 3) 3 T )"

>
q R = S B B ,
_ 4 |+z |
2ET ( S 12 a0 V) )t



Mechanics of Solids: Theory of Elasticity

FORMS OF AIRY STRESS FUNCTIONS IN CYLINDRICAL COORDINATES

For problems with rotational symmetry we have
In general we start with (replaced ®33(r, §) with $(r, 7))

O(r, ) = Ag+ Ay Inr + Aor? + Azr?Inr
+ (Ag+ Aslnr + Agr® + A-r? Inr)é

A
+ (Au?" + Ajorlnr + = + Ar® + Asr6 + AgrfIn 7‘) cos 6
,

B ‘
+ (Bllr + BiorInr + = Biar? + Bysrf + Bigrfln ?‘) sin 6
r

o0

+ E (A-r'z,l'rn + A-nQ'TIQ—i_n + A-n,.‘}r_n + A-r'z;l'rQ_n) cos nt

o0
+ (B-n.l'r?lz' + B H'Q_?,Q—{—-n + B-n.S'T‘_n + B-n.:l'rQ_n) sinnf
n=2

The coefficients are constants and 7 is an integer.



Mechanics of Solids: Theory of Elasticity - Linear Load

Example: Normal Linear Load on the
flat Edge of a Semi-Infinite Plate

Boundary Conditions
The stresses

o, =0,=0 for O==xx/2

The vertical force is in equilibrium
with the vertical component of the
radial stress at a distance r.

The solution to the problem is obtained
by setting the following Airy function

O(r.0) = Crfsinf

Which satisfies the biharmonic equation

1 0 0> 1 0?2
V4(I) — [ = — — ).
(r Or + Or? + r? 092>
(1 00 00 1 02<P) _

¢ + ¢ I + I3 h ‘
r Or or2  r2 002

— STRESS COMPONENTS

1 0P 1 92¢ 02 P

O-'?‘?’ — —

,_ + ¢ ‘ ¢ 0-96" — 0 ¢
r Or  r2 002 or?

1 od 1 9°P

Org = — — — —




Mechanics of Solids: Theory of Elasticity - Linear Load

Example: Normal Linear Load on the 20 cos B
flat Edge of a Semi-Infinite Plate Ty = . . 09 = Opg = ()

+7 /2
P+ / T cosB(rdf) =

—7 /2
+7r /2 P
P+ 20/ cos?fd =0 = (' = ——
—7/2 7
Boundary Conditions o 2P cost
. rr — I
The stresses are : T r
o, =0,=0 for O==xx/2
Tgop = 0.0 = 0
The vertical force is in equilibrium 00 rt

with the vertical component of the
radial stress at a distance r.




Mechanics of Solids: Theory of Elasticity - Linear Load

With r = d cos 0 |
l From the stresses and Hook’s law we have the strains,

o, 2P cos@
2P cost o= w28
Typyp = — or mE r

l T r ~_u, 10up  2Pvcos6

r i r 0  TE 71
e 2P 1 A 1 (1 ou,. N Oug ’119) 0
rr — - =r0 — 5\ 777 =Y B
T d 2 \r 00 Or 1
They are integrated to get the displacements,

2P b (1—-v)P .
U, = E cosf In 7— — TQ sin 6
(4P 2P b (1—-v)P
Up = 7 sin @ —7 sin # In . —

(¥
>
>

I

g cos b

To avoid rigid body displacements, we impose the following
conditions in the integration constant (b is an arbitrary constant):

wo(r,0)]g=0 = 0 wy(1,0)|o=0r=p = 0
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